Introduction

Medical application context
Design a Computer Aided Diagnostic (CAD) system for lesion screening in brain MR images

 Assist clinicians in fast lesion detection in routine exams

Specifics
- No annotated pathological data \(\Rightarrow\) voxel-level outlier detection problem
- Relatively small data set (around 100 training subjects)

Objective
Design an automatic feature extraction method to be used in outlier detection problem at voxel level

CAD pipeline description

Results

Table 1: Test results for 9 patients with confirmed lesions reporting true positive/false positive clusters. Our rSNN features are compared to the handcrafted features in [3] and those obtained with stacked denoising autoencoder (sDA).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Handcrafted</td>
<td>1/0</td>
<td>1/0</td>
<td>1/0</td>
<td>0/0</td>
<td>0/1</td>
<td>0/1</td>
<td>0/1</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>sDA</td>
<td>1/2</td>
<td>1/5</td>
<td>1/3</td>
<td>0/3</td>
<td>1/3</td>
<td>1/1</td>
<td>0/3</td>
<td>0/2</td>
<td>0/5</td>
</tr>
<tr>
<td>rSNN</td>
<td>2*/1</td>
<td>1/2</td>
<td>1/1</td>
<td>0/3</td>
<td>1/1</td>
<td>0/1</td>
<td>0/2</td>
<td>0/4</td>
<td>0/4</td>
</tr>
</tbody>
</table>

Conclusion and future work

- Automatic feature extraction allows detecting voxel-level outliers in brain MR images and yields at least equivalent epilepsy lesion detection rate as epilepsy-specific handcrafted features.
- Slightly more false positive detections compared to the handcrafted features.
- Future work includes integrating other imaging modalities such as MR FLAIR images.