ON CLUSTERING FINANCIAL TIME SERIES
Gautier Marti, Philippe Donnat and Frank Nielsen

NOISY CORRELATION MATRICES
Let X be the matrix storing the standardized returns of $N = 560$ assets (credit default swaps) over a period of $T = 2500$ trading days. Then, the empirical correlation matrix of the returns is

$$ C = \frac{1}{T}XX^T. $$

We can compute the empirical density of its eigenvalues

$$ \rho(\lambda) = \frac{1}{N} \frac{dn(\lambda)}{d\lambda}, $$

where $n(\lambda)$ counts the number of eigenvalues of C less than λ.

From random matrix theory, the Marchenko-Pastur distribution gives the limit distribution as $N \to \infty$, $T \to \infty$ and T/N fixed. It reads:

$$ \rho(\lambda) = \frac{T/N}{2\pi \sqrt{(\lambda_{\text{max}} - \lambda)(\lambda - \lambda_{\text{min}})}}, $$

where $\lambda_{\text{max}} = 1 + N/T \pm 2\sqrt{N/T}$, and $\lambda \in [\lambda_{\text{min}}, \lambda_{\text{max}}]$.

Figure 1: Marchenko-Pastur density vs. empirical density of the correlation matrix eigenvalues

Notice that the Marchenko-Pastur density fits well the empirical density meaning that most of the information contained in the empirical correlation matrix amounts to noise: only 26 eigenvalues are greater than λ_{max}. The highest eigenvalue corresponds to the ‘market’, the 25 others can be associated to ‘industrial sectors’.

CLUSTERING TIME SERIES
Given a correlation matrix of the returns,

Figure 2: An empirical and noisy correlation matrix

and finally filter the noise according to the correlation pattern:

Figure 3: The same noisy correlation matrix re-ordered by a hierarchical clustering algorithm

and by the returns volatility

Figure 4: The resulting filtered correlation matrix

BEYOND CORRELATION
Sklar’s Theorem. For any random vector $X = (X_1, \ldots, X_N)$ having continuous marginal cumulative distribution functions F_i, its joint cumulative distribution F is uniquely expressed as

$$ F(X_1, \ldots, X_N) = C(F_1(X_1), \ldots, F_N(X_N)), $$

where C, the multivariate distribution of uniform marginals, is known as the copula of X.

Figure 5: ArcelorMittal and Société générale prices are projected on dependence copula space; notice their heavy-tailed exponential distribution.

Let $\theta \in [0,1]$. Let $(X, Y) \sim V^2$. Let $G = (G_X, G_Y)$, where G_X and G_Y are respectively X and Y marginal cdf. We define the following distance

$$ d_\theta^2(X, Y) = \theta d_1^2(G_X(X), G_Y(Y)) + (1 - \theta)d_\theta^2(G_X, G_Y), $$

where $d_1^2(G_X, G_Y) = 3\text{E}[(G_X(X) - G_Y(Y))^2]$, and $d_\theta^2(G_X, G_Y) = \int_{\mathbb{R}} \left(\sqrt{\frac{dG_X}{d\lambda}} - \sqrt{\frac{dG_Y}{d\lambda}} \right)^2 d\lambda$.

Figure 6: (Top) The returns correlation structure appears more clearly using rank correlation; (Bottom) Clusters of returns distributions can be partly described by the returns volatility

Figure 7: Stability test on Odd/Even trading days subsampling: our approach (GNPR) yields more stable clusters with respect to this perturbation than standard approaches (using Pearson correlation or L_2 distances).