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Abstract
Variational autoencoders (VAEs) are one of the most powerful tools for approximate inference in
the context of deep learning. We study the use of Gaussian Graphical Models for the approxima-
tion of both the posterior of the latent variables and the conditional distribution of the observations.
Two examples are presented: a chain model and a regular grid, in order to capture correlations not
represented by the independence model, allowing efficient stochastic backpropagation.

Background on Variational Autoencoders
Formulation of the problem: Let z be a continuous latent random variable, generating the observation
x, through a function fθ(·), such that

∫
pθ(x|z)pθ(z)dz is intractable. The goal is inference, i.e. pθ(z|x)

z

x

fθ(·)qφ(z | x)

Variational inference finds qφ(z|x) ≈ pθ(z|x), by optimizing a lower-bound of
the log-likelihood:

ln pθ(x) ≥ Eqφ(z|x)[ln pθ(x|z)]− KL(qφ(z|x) ‖ pθ(z)

Variational Autoencoders tackle the problem of
approximate inference in the context of neural networks.

Limitation: assume independence of the latent variables and the observations.
Recent papers, such as [5] and [1] propose methods of enriching the distribution of the latent variables.

Goal: introduce correlations between latent variables, through a Gaussian distribution with a sparse
precision matrix, by using Gaussian Graphical Models (GGMs) [3].

Gaussian Graphical Models for Variational Autoencoders
Proposed Models: chain and grid topologies =⇒ sparse precision matrix P; the number of non-zero
elements of P is linear in the dimension of the latent variable. Similarly, sampling and computing the
KL can be done in linear time.

Key observation: the neural network can learn any ordering for the latent variable. Thus, model
selection is invariant to permutations of the nodes.

Our Approach:
• learn the values of the Cholesky decomposition LLT = P through the network

• sample in linear time by solving the linear system LTz = ε, where ε ∼ N (0, I)

Chain Dependency Structure
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Figure 1: Chain Model

P =


σ1 λ1 0
λ1 σ2 λ2

. . .
0 λk−1 σk


• The GGM in [1] is represented by a tridiagonal P = Σ−1 for p(z|x) = N (µ,Σ);

• compute Tr(Σ) using the tridiagonal matrix inversion algorithm, in linear time.

Grid Dependency Structure

• For fig. [3] P is block-tridiagonal given by a lower-block-bidiagonal Cholesky factor;

•Approximate Tr(Σ) with stochastic methods or exact computation in quadratic time

• For fig. [2] we can guarantee that P is positive definite with Gershgorin circle theorem.

z1 z2 z3

z4 z5 z6

z7 z8 z9

Figure 2: Regular Grid
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Figure 3: Extended Grid

Graphical Models for the Observed Variable
•A graphical model can be adapted also for the generative network

• For x ∈ (0, 1)n continuous, assume a multivariate logit-normal distribution:

p(x|z) = 1∏n
i=1(xi(1−xi))

N (log x
1−x | µ,Σ)

• The grid is a natural model for images, capturing correlations between adjacent pixels.

Experimental Results

Figure 4: Diagonals of the Cholesky factor for the chain and grid for one data point

• Comparison on stochastically binarized MNIST between
three different models for the latent variables;

• network architecture: feed-forward with two hidden layers,
latent size 16, exponential linear units;

• plots for the means in fig. [5] and for the elements of the
Cholesky factors in the grid and chain structures in fig. [4],
by tracking one point in the dataset.

Model ≈ log p(x) log p(x) ≥
Diagonal -89.2 -93.4
Chain -89.1 -93.4
Ext. Grid -88.8 -93.0

Table 1: Approx. log-marginal and lower-bound

Figure 5: Means for the diagonal, chain and grid for one data point

Future Research Directions
• Experimental analysis of the impact on the log-likelihood when using the grid structures to introduce

correlations between observations;

• test the impact of the Gaussian graphical models for the latent variables on multiple stochastic layers;

• explore the properties of the space of latent variables, using the geometry of the statistical models
associated;
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