

An Approach for Machine Learning-Based Contouring of Daily CBCT with Planning CT as Prior

DS³ 2017 Poster 097

Eliott Brion^{1*†}, Jean Léger^{1*}, Benoît Macq¹
¹ICTEAM Institute, Université catholique de Louvain, Belgium

Motivation

In radiotherapy, sequences of 3D medical images need to be automatically segmented for better treatment follow-up. Classical algorithms rely on the availability of an initial manual (CT) segmentation in order to propagate the contours to a subsequent (CBCT) image. However, such methods fail in case of large changes in the patient's morphology along the treatment. The availability of large inter-patient labelled (CT) datasets raises hope for machine-learning based approaches that will be more robust to such deformations.

Our contribution (ongoing work)

Challenge	Explanation	Proposed solution
Prior	How to integrate patient-specific prior information in the inter-patient framework?	Three channels as input to the algorithm
Modalities	How to learn to segment CBCT images whereas CT images are annotated?	CBCTs are simulated from deformed CTs
Contrast	How to separate different regions of interest with comparable appearance on CBCT images?	Deep neural networks

Material

For 1000 patients with cancer in the pelvic region, we have the planning CT (CTi for patient i) and the corresponding contours (CTi^c for patient i) as a binary mask. However, the contoured CBCTs are not available. Hence, they will be simulated on Step 1 below.

Methods

Step 1: Prepare the data

dCT*i*: deformed CT for patient *i*. dCBCT*i*: simulated CBCT for patient *i*.

For $i \in Training \cup Test$:

Step 3: Test the algorithm

For $i \in Test$:

Measure performance (e.g., Dice, Hausdorff distance, AUC)

Finally: assess the pertinence of using the trained algorithm to measure inter-fractional motion in clinical routine.

Step 2: Train the algorithm

The network that we will use is 3D U-Net [1]. We chose this network because its contracting path can capture context information, while its expanding path enables a precise localization, which is required for segmentation. This ultimately leads to an accurate yet computationally effective segmentation.

For $i \in Training$:

