
Methods
Step 2: Train the algorithm

Step 3: Test the algorithm

Step 1: Prepare the data
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For 1000 patients with cancer in the pelvic region, we have the planning 
CT (CT𝑖 for patient 𝑖) and the corresponding contours (CT𝑖c for patient 𝑖) 
as a binary mask. However, the contoured CBCTs are not available. Hence, 
they will be simulated on Step 1 below.
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For 𝑖 ∈ Training ∪ Test:
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For 𝑖 ∈ Test:
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Motivation
In radiotherapy, sequences of 3D medical images need to be automatically 
segmented for better treatment follow-up. Classical algorithms rely on the 
availability of an initial manual (CT) segmentation in order to propagate the 
contours to a subsequent (CBCT) image. However, such methods fail in case of 
large changes in the patient’s morphology along the treatment. The availability of 
large inter-patient labelled (CT) datasets raises hope for machine-learning based 
approaches that will be more robust to such deformations.

Our contribution (ongoing work) 

Challenge Explanation Proposed solution

Prior How to integrate patient-specific prior information in the inter-patient framework? Three channels as input to the algorithm

Modalities How to learn to segment CBCT images whereas CT images are annotated? CBCTs are simulated from deformed CTs

Contrast How to separate different regions of interest with comparable appearance on CBCT images? Deep neural networks

For 𝑖 ∈ Training:
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Finally: assess the pertinence of using the trained algorithm to 

measure inter-fractional motion in clinical routine.

dCT𝑖: deformed CT for patient 𝑖.
dCBCT𝑖: simulated CBCT for patient 𝑖.

The network that we will use is 3D U-Net [1]. We chose this network 
because its contracting path can capture context information, while 
its expanding path enables a precise localization, which is required 
for segmentation. This ultimately leads to an accurate yet
computationally effective segmentation.
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