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Count data are increasingly ubiquitous in big-data settings such as genomic sequencing data,user-rating data, spatial incidence data, site visits. . .
Research has so far mainly focussed on graphical models over binary, multinomial and Gaus-sian random variables only.
Litle work makes use of Poisson assumption: SPGM, QPGM, TPGM [1], LPGM [2], PDNs[3]. . . Yet, some problems remain to be solved: existing of a consistent joint distribution, possibleinaccurate inferences when dealing with models of high dimension. . .
Here, we will concentrate on investigating a new algorithm for structure learning of undirectedPoisson graphical models, called PC-LPGM:
X able to reconstruct the underlying structure from a set of given data;
X feasible up to high dimensional data;
X out performing on average state-of-the-art algorithms.

Purpose

Consider a p-random vector X = (X1, X2, . . . , Xp). Let V = {1, 2, . . . , p} and assume each conditionaldistribution Xs|x{V \{s}} follows a Poisson distribution,
Xs|x{V \{s}} ∼ Pois(fs(x{V \{s}})),where, fs(x{V \{s}}) = exp{∑t 6=s θ∗stxt}. We note that there is one edge between s and t, if and onlyif θ∗st 6= 0 or θ∗ts 6= 0.Problem: Learning an undirected (possibly sparse) graphical structure from given data, i.e. identifyingthe set of non-zero parameters θ∗st .Solution: Conditional independence tests, i.e. Wald type tests on the parameters θst . In detail,assume Xs|xK ∼ Pois(exp{∑t∈K θ∗st|Kxt}), ∀s ∈ V ,K ⊂ {1, . . . , p}\{s}. The test statistic for the

hypothesis H0 : θst|K = 0 is given by Zst|K = √
nθ̂st|K√[

J(θ̂s|K)−1]
tt

, where [A]jj denotes the element in
position (j, j) of matrix A.

Problem

Let adj(G, s) = {t ∈ G : (s, t) ∈ E} denotes the set of all nodes that are adjacent to s on the graph
G.
Algorithm 1 The PC-LPGM algorithm1: Input: n independent realizations of the p-random vector X; i.e., x(1), x(2), . . . , x(n);an ordering order(V ) on the variables, (and a stopping level m).2: Output: An estimated undirected graph Ĝ.3: Form the complete undirected graph G̃ on the vertex set V .4: l = −1; Ĝ = G̃5: repeat6: l = l+ 17: for all vertices s ∈ V , do8: let K = adj(G, s)9: end for10: repeat11: Select a (new) ordered pair of nodes s, t that are adjacent in Ĝ s.t.12: |K\{t}| ≥ l, using order(V ).13: repeat14: choose a (new) set S ⊂ K\{t} with |S| = l, using order(V ).15: if H0 : θst|S = 0 not rejected
16: delete edge (s, t) from Ĝ17: end if18: until edge (s, t) is deleted or all S ⊂ K\{t} with |S| = l have been considered.19: until all ordered pair of adjacent variables s and t such that |K\{t}| ≥ l and20: S ⊂ K\{t} with |S| = l have been tested for conditional independence.21: until l = m or for each ordered pair of adjacent nodes s, t: |adj(G, s)\{t}| < l.
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Algorithm

For two different cardinalities, i.e., p = 10 and p = 100, we consider three graphs of differentstructure: (i) a scale-free graph; (ii) a hub graph; (iii) a random graph. For each graph, 500 datasetswere sampled as in [2] for three sample sizes, i.e., n = 200, 1000, 2000.
We adopt two measures: PPV that stands for Positive Predictive Value and is defined as
TP/(TP +FP); and Sensitivity (Se), defined as TP/(TP +FN), where TP (true positive), FP (falsepositive), and FN (false negative) refer to the inferred edges.

Simulation setup

PC-LPGM The PC-LPGM algorithm, i.e. the proposed algorithm.
LPGM The local Poisson graphical model algorithm [2].
PDNs The Poisson Dependency Network algorithm [3].
VSL The variable selection with lasso algorithm [5] on log-transformeddata log(1 + X ).
GLASSO The graphical lasso algorithm [6] on log-transformed data log(1+X ).
NPN-Copula The nonparanormal-Copula algorithm [7].
NPN-SKEPTIC The nonparanormal-SKEPTIC algorithm [8].

Other approaches to compare

Results for p = 10
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(a) scale−free

● ●

●

●

●

●
●

●

●

●

1

2

3

4

5

6

7

8

9

10

(b) hub
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(a) random
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Results for p = 100
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(a) scale−free
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(b) hub
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Results

•PC-LPGM outperforms the other approaches on average in term of reconstructing the structurefrom given data.
•When p = 10, PC-LPGM reaches the highest TP value, followed by PDN and LPGM. Among thealgorithms with highest PPV, PC-LPGM shows a sensitivity approaching 1 already at the samplesize n = 1000.
•PC-LPGM is far better than that of the competing algorithms employing the Poisson assumption,i.e., PDN and LPGM. This might be explained in terms of difference between penalization andrestriction of the conditional sets.
•Gaussian based methods (VSL, GLASSO) perform reasonably well, with an inferior score withrespect to the leading threesome.
• Sophisticated techniques that replace the Gaussian distribution with a more flexible continuousdistribution such as the nonparanormal distribution, e.g., NPN-Copula, NPN-SKEPTIC can showslight gains in accuracy over the naive analysis.
•Results for the high dimensional setting (p = 100) are somehow comparable. The PC-LPGMoutperforms all competing methods, and differences among algorithms are more evident.
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