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Purpose

Count data are increasingly ubiquitous in big-data settings such as genomic sequencing data,
user-rating data, spatial incidence data, site visits...

Research has so far mainly focussed on graphical models over binary, multinomial and Gaus-
sian random variables only.

Litle work makes use of Poisson assumption: SPGM, QPGM, TPGM [1], LPGM [2], PDNs
[3]... Yet, some problems remain to be solved: existing of a consistent joint distribution, possible
inaccurate inferences when dealing with models of high dimension...

Here, we will concentrate on investigating a new algorithm for structure learning of undirected
Poisson graphical models, called PC-LPGM:

v able to reconstruct the underlying structure from a set of given data;
v teasible up to high dimensional data;

v out performing on average state-of-the-art algorithms.

Problem

Consider a p-random vector X = (X4, X2,...,Xp). Let V. = {1,2,..., p} and assume each conditional
distribution X5|x{ V\{s}} follows a Poisson distribution,

Xsxpu\(sy ~ Pois(fs(xpuspy)),

where, fs(xp\\fs1}) = exp{Zﬁé5 0%.xt}. We note that there is one edge between s and ¢, if and only
if 62 # 0 or 67, # 0.

Problem: Learning an undirected (possibly sparse) graphical structure from given data, i.e. identifying
the set of non-zero parameters 6.

Solution: Conditional independence tests, i.e. Wald type tests on the parameters 8s¢. In detail,
assume Xs|xg ~ Pois(exp{)_;ck Q:t“(xt}), Vs € V,K C {1,...,p}\{s}. The test statistic for the
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hypothesis Hp : 654 = 0 is given by Zgyk = , where [A]jj denotes the element in

position (j, j) of matrix A.

Algorithm

Let adj(G,s) ={t € G: (s, t) € E} denotes the set of all nodes that are adjacent to s on the graph

G

Algorithm 1 The PC-LPGM algorithm

1. Input: n independent realizations of the p-random vector X; i.e, x1) x(2) . x(n),
an ordering order(V) on the variables, (and a stopping level m).

2. Output: An estimated undirected graph G.

3. Form the complete undirected graph G on the vertex set V.

v l=-1;, G=0G

5. repeat

5} [=1+1

7. for all vertices s € V, do

8 let K = adj(G, s)

9

0

1

end for
1 repeat
11: Select a (new) ordered pair of nodes s, t that are adjacent in G s.t.
12: IK\{t}| > [, using order(V).
13: repeat
14: choose a (new) set S C K\{t} with |S| = [, using order(V).
15: if Hop : Os¢js = 0 not rejected
16: delete edge (s, t) from G
17: end if
18: until edge (s, t) is deleted or all S € K\{t} with |S| = [ have been considered.
19:  until all ordered pair of adjacent variables s and t such that |K\{t}| > [ and
20: S Cc K\{t} with |S| = [ have been tested for conditional independence.

21: until [ = m or for each ordered pair of adjacent nodes s, t: |adj(G, s)\{t}| < L

Simulation setup

For two different cardinalities, i.e, p = 10 and p = 100, we consider three graphs of different
structure: (i) a scale-free graph; (il) a hub graph; (iil) a random graph. For each graph, 500 datasets
were sampled as in [2] for three sample sizes, i.e., n = 200, 1000, 2000.

We adopt two measures: PPV that stands for Positive Predictive Value and is defined as
TP/(TP + FP), and Sensitivity (Se), defined as TP/(TP + FN), where TP (true positive), F P (false
positive), and FN (false negative) refer to the inferred edges.

Other approaches to compare

The PC-LPGM algorithm, i.e. the proposed algorithm.

The local Poisson graphical model algorithm [2].

PDNs i , ’
The Poisson Dependency Network algorithm [3].

VSL The variable selection with lasso algorithm [5] on log-transformed
data log(1 + X).

The graphical lasso algorithm [6] on log-transformed data log(1+ X).

NPN-Copula .
The nonparanormal-Copula algorithm [7].

The nonparanormal-SKEPTIC algorithm [8].

Results for p = 100
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Conclusion

e PC-LPGM outperforms the other approaches on average in term of reconstructing the structure
from given data.

e When p = 10, PC-LPGM reaches the highest TP value, followed by PDN and LPGM. Among the
algorithms with highest PPV, PC-LPGM shows a sensitivity approaching 1 already at the sample

size n = 1000.

e PC-LPGM is far better than that of the competing algorithms employing the Poisson assumption,
t.e., PDN and LPGM. This might be explained in terms of difference between penalization and
restriction of the conditional sets.

e Gaussian based methods (VSL, GLASSO) perform reasonably well, with an inferior score with
respect to the leading threesome.

e Sophisticated techniques that replace the Gaussian distribution with a more flexible continuous
distribution such as the nonparanormal distribution, e.g., NPN-Copula, NPN-SKEPTIC can show
slight gains in accuracy over the naive analysis.

e Results for the high dimensional setting (p = 100) are somehow comparable. The PC-LPGM
outperforms all competing methods, and differences among algorithms are more evident.
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