1.1 LiDAR point clouds

- Active acquisition method
- Fixed, embarked, aerial
- High precision (<1cm)
- Huge volume (>10^7)
- Complex structure

Goal: semantic classification and segmentation

1.2 Graph structure of point clouds

- Graph structure $G = (V, E, w)$
- V: set of 3D points
- E: adjacency relationship
- w: edge weight or features
- k-nn, Voronoi adjacency, etc...

1.3 Graph-structured optimization

$$x^* = \arg \min_{x \in \Omega} \sum_{v \in V} f(x_v, y_v) + \sum_{(u,v) \in E} g(x_u - x_v)$$

- Piecewise constant approximation of a function on a graph:
 - Ω search space
 - y observation/features
 - f fidelity function
 - g sparsity inducing
- Fast solving algorithms depending on the nature of Ω, f and g:
 - Combinatorial: α-expansion
 - Continuous + convex: PFDR
 - Continuous + non-convex: ℓ_0-cut pursuit [1]

2.1 Probabilistic classification

- Numerous methods exists for classifying 3D points
- Produces a probabilistic classification y on each vertex
- Allows to compute the certainty of each affectation
- No spatial regularity

2.2 Spatial regularization

- State-of-the-art: CRF structured by G: $\Omega = S$ corners of the simplex, $f(x_v, y_v) = \langle x, \log(y_v) \rangle$ and $g = \delta(\cdot \neq 0)$
- MAP inference: fast but produce a hard labeling
- Marginal inference: slow and poor precision
- Structured regularization [2]:
 - Relax Ω to the full simplex
 - Generalize f to $\|x_v - y_v\|$, $\text{KL}(x_v, y_v)$, (x_v, y_v) and g to \cdot

2.3 Regularization results

pointwise classification associated certainty

3.1 Geometric segmentation

- Geometrically simple \Rightarrow semantically homogeneous
- Piecewise constant approximation of geometric features: $f(x_v, y_v) = \|x_v - y_v\|^2$ and $g = \delta(\cdot \neq 0)$
- Can efficiently be solved by cut-pursuit
- Evaluating the segmentation: purity of the segment w.r.t a ground truth

3.2 Segmentation results

- Probabilistic classification associated certainty

References
