FEATURE SIDE- INFORMATION (FSI)

- Feature side-information: vectorial descriptions of the features, which give more detailed information about feature’s property, typically derived from domain knowledge.

Examples:
- Chemoinformatics → molecule properties
- Genomics/proteomics → gene and protein properties, pathways and more

Text classification → word2vec

OBJECTIVE

- Standard supervised learning:
 \[
 X = \begin{bmatrix}
 x_1 & x_2 & \cdots & x_n
 \end{bmatrix},
 \quad \phi = \begin{bmatrix}
 \phi_1 & \phi_2 & \cdots & \phi_m
 \end{bmatrix},
 \quad Y = \begin{bmatrix}
 y_1 & y_2 & \cdots & y_m
 \end{bmatrix},
 \quad \text{where } k \text{ is the number of classes}
 \]

- Supervised learning with FSI:
 \[
 X = \begin{bmatrix}
 x_{11} & x_{12} & \cdots & x_{1n}
 \vdots & \vdots & \ddots & \vdots
 x_{m1} & x_{m2} & \cdots & x_{mn}
 \end{bmatrix},
 \quad \phi = \begin{bmatrix}
 \phi_{11} & \phi_{12} & \cdots & \phi_{1n}
 \vdots & \vdots & \ddots & \vdots
 \phi_{m1} & \phi_{m2} & \cdots & \phi_{mn}
 \end{bmatrix},
 \quad Y = \begin{bmatrix}
 y_1 & y_2 & \cdots & y_m
 \end{bmatrix},
 \quad \text{where } \lambda \text{ is the number of features}
 \]

- Our objective:
 Learn a mapping \(\phi: x \in \mathbb{R}^d \rightarrow y \in \mathbb{R}^m \) using the information provided not only by the matrices \(X, Y \), but also by matrix \(Z \)
 \(X \): instance matrix
 \(Y \): label matrix
 \(Z \): feature side-information matrix

MAIN IDEA

- Main idea: the model should treat similar features in a similar manner, i.e., small relative changes in similar features should leave model outputs unaffected.

\[
\phi(x + \lambda_i e_i + \lambda_j e_j) \approx \phi(x + \lambda'_i e_i + \lambda'_j e_j)
\]

where \(\lambda_i + \lambda_j = \lambda'_i + \lambda'_j = c \)

In the limit case, if \(i, j \), features are identical, we have:

APPROXIMATIONS OF THE REGULARIZER

- Analytical approximation:
 \[
 \hat{R}(\phi) \approx \sum_{ij} \left(\| \nabla_i \phi(x) - \nabla_j \phi(x) \|^2 \right) S_{ij} P(x) dx
 \]
 \[
 \approx \int \text{Tr}(J(x)LJ^T(x))P(x) dx
 \]

With sample estimation given by:

\[
\hat{R}(\phi) = \sum_{ij} \left(\| \nabla_i \phi(x_k) - \nabla_j \phi(x_k) \|^2 \right) S_{ij}
\]

where \(\nabla_i \phi(x_k) = \frac{\partial \phi}{\partial x_i} \bigg|_{x=x_k} \)

\[
\text{Stochastic approximation of the regularizer is:}
\]

\[
\hat{R}(\phi) = \sum_{ij} \left(\| \phi(x_k + \lambda_i e_i + \lambda_j e_j) - \phi(x_k + \lambda_i' e_i + \lambda_j' e_j) \|^2 \right) S_{ij}
\]

REGULARIZER DRIVEN BY FSI

- Pairwise feature regularizer:
 \[
 R_{ij}(\phi) = \int \| \phi(x + \lambda_i e_i + \lambda_j e_j) - \phi(x + \lambda_i' e_i + \lambda_j' e_j) \|^2 S_{ij} I(\lambda) P(x) dx
 \]

where \(I(\lambda) = \begin{cases} 1 & \text{if } \lambda_i + \lambda_j = \lambda'_i + \lambda'_j, \\
0 & \text{otherwise} \end{cases} \)

- Feature side-information: word2vec

EXPERIMENTAL RESULTS

- Real world experiments
 - Text classification: word counts
 - Feature side-information: word2vec

SUMMARY

- We incorporate feature-side information in the learning of nonlinear models
- Our method provides an indirect way to apply many of the regularizers used in linear models to nonlinear ones.

REFERENCES

FUTURE RESEARCH

Performance difference is less striking in the real data, we have a number of hypotheses:
- The similarity matrix might not be appropriate for the task at hand.
- Augmentation size can vary depending on where we are in the feature space.
- We are currently exploring strategies to address the above limitations.

OPEN POSITION

We have an open post doc position in a project related to this one.

Email: Alexandros.Kalousis@hesge.ch