Non parametric multi-task relative attribute learning
Youssef Alami Mejjati1 and Kwang In Kim1
1University of Bath

Abstract
Relative attribute ranking aims at ranking images given an attribute (Per example tasty, natural ...etc). Motivated by the fact that several attributes might be related, we introduce a new multi-task learning (MTL) formulation for relative attribute ranking.

Motivation
- A person can not give a numerical value for how present an attribute is in an image (i.e how ‘Sporty’ this shoe is).
- Several attributes share the same properties, MTL can help in this situation.
- Having a framework that allows the combination of several different architectures for each attribute, hence the non parametric formulation.

Problem
- If x_i has more of attribute l than x_j, then we want a mapping f such that $f(x_i) > f(x_j)$.
- We want to discover relationships between tasks and use them to improve the generalization performance of each predictor individually.

Methodology
- The input labels are pairwise preference informations.
- We train separately several different architectures (Neural networks, Svm).
- We choose the best predictor per attribute then we stack the predictions across the entire dataset for all the attributes in P.
- Task relationships are discovered by minimizing the rank of the prediction matrix F, or equivalently by minimizing its trace norm.

Formulation

Objective:

$$\min_F \frac{1}{T} \sum_{l=1}^{T} \frac{1}{n_l} \max(0, 1 - F'A(l))^2 + \beta ||F - P||^2_F + \lambda ||F||_*$$

Objective

- T is the number of tasks, N is the number of data points. n_l is the number of pairwise comparisons given as input for task l.
- $P \in \mathbb{R}^{N \times N}$ is the predictors matrix, each row contain the predictions across the entire dataset for a specific task.
- $A(l) \in \mathbb{R}^{N \times n_l}$ is the preference matrix. Each column of A is a vector of size N containing exactly one 1 and one -1. If $A(l)(i) = 1$ and $A(l)(j) = -1$, it means that data point i contains more of attribute l than data point j.
- $F(l)$ is the predictor for task l, i.e. row number l of F.
- $||.||_F$ is the Frobenius norm and $||.||_*$ is the trace norm.
- β, λ are regularization parameters.

Results

OSR dataset: 2688 images, 6 attributes: Natural, Open, Perspective, Large-objects, Diagonal-plane, Close-depth.

- Five training configurations. Training with 20, 40, 60, 80, 100 pairwise preferences.
- For each of this configurations we take 10 different splits.
- Parameters to tune: λ, β (via validation set).

On display bellow are the mean ranking accuracies for each attribute of OSR dataset over the 10 splits and for all the 5 training configurations.

Conclusion

- We present a new multi-task learning method for relative attribute ranking.
- Our regularization strategy allows the combination of non parametric predictors, independently of their feature space or their origin (i.e.it could be a human predictor, an artificial neural network or a Gaussian process...etc).
- We demonstrate the abilities of our algorithm on OSR dataset, and achieve higher performance than several MTL algorithms baselines on almost all the attributes.

References