Motivation - Inferring Genome Regulation Networks

Yeast cells → RNA measurements → Regulatory network

DNA → RNA → Protein

Contribution: formalise when two (causal) models at different levels of detail are consistent.

Transformations of SEMs

\mathcal{M}_X implies the poset of distributions $\mathcal{P}_X := \{\mathcal{P}_X^{\omega(i)} : \omega(i) \in \mathcal{I}_X, \leq_X\}$

Suppose we are given \mathcal{M}_X and a ’measuring device’ $\tau : \mathcal{X} \rightarrow \mathcal{Y}$

$X \sim P_X$ an r.v. in \mathcal{X} $\Rightarrow \tau(X) \sim P_{\tau(X)}$ is an r.v. in \mathcal{Y}

$\tau : \mathcal{P}_X \rightarrow \mathcal{P}_{\tau(X)} = \{\mathcal{P}_{\tau(X)}^{\omega(i)} : \omega(i) \in \mathcal{I}_X, \leq_X\}$

Does there exist an \mathcal{M}_Y such that $\mathcal{P}_X = \mathcal{P}_{\tau(X)}$?

Definition: Exact Transformations between SEMs

Let \mathcal{M}_X and \mathcal{M}_Y be SEMs and $\tau : \mathcal{X} \rightarrow \mathcal{Y}$ be a function. We say \mathcal{M}_Y is an exact τ-transformation of \mathcal{M}_X if there exists a surjective order-preserving map $\omega : \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$\mathcal{P}_{\tau(X)}^{\omega(i)} = \mathcal{P}_{\tau(X)}^{\omega(j)}$$

Examples of exact transformations

Stationary Behaviour of Dynamical Processes

Accepted to Uncertainty in Artificial Intelligence (UAI) 2017
https://arxiv.org/abs/1707.00819

Causal Consistency of Structural Equation Models

Paul K. Rubenstein* 1,2 Sebastian Weichwald* 1,3 Stephan Bongers 1 Joris M. Mooij 1 Dominik Janzing 1 Moritz Grosse-Wentrup 1 Bernhard Schölkopf 1
1MPI for Intelligent Systems, Tübingen 2Machine Learning Group, University of Cambridge 3Max Planck ETH Center for Learning Systems 4Informatics Institute, University of Amsterdam

An SEM $\mathcal{M}_X = (\mathcal{S}_X, \mathcal{Z}_X, \mathcal{P}_X)$ consists of

- \mathcal{S}_X a set of structural equations $X_i = f_i(X_i, E_i)$
- \mathcal{Z}_X is a distribution over the exogenous variables E.
- \mathcal{Z}_X is a subset of all perfect interventions with partial ordering
- e.g. $\text{do}(X_2 = 0) \leq_X \text{do}(X_2 = 0, X_3 = 2) \leq_X \text{do}(X_2 = 0, X_3 = 0) \leq_X \text{do}(X_3 = 2)$

$X_1 = f_1(E_1)$
$X_2 = f_2(E_2)$
$X_3 = f_3(X_1, X_2, E_3)$
$X_4 = f_4(X_1, E_5)$
$E = P_E$