COMPUTATIONAL DECONVOLUTION OF MIXED SIGNALS IN TUMOR MICROENVIRONMENT USING INDEPENDENT COMPONENTS ANALYSIS

Urszula Czerwinska¹, Ulykbek Kairov², Laura Cantini¹, Alessandro Greco¹, Emmanuel Barillot¹, Vassili Soumelis³, Andrei Zinovyev¹

1 Institut Curie, PSL Research University, Mines Paris Tech, Inserm, U900, Paris 2 Laboratory of bioinformatics and computational systems biology, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan 3 Institut Curie, PSL Research University, Inserm U932, Paris

TME critically impacts cancer prognosis and response to treatment¹

TME is composed of tumor cells, fibroblasts ana a diversity of immune cells¹

Estimating immune infiltration and its impact remains a challenging task²

Apply ICA to reduce tumor transcriptomes into essential factors 3

Identify the immune-related genes and their importance in each transcriptome

Identify cell-type specific independent components

Develop and validate the method and the pipeline

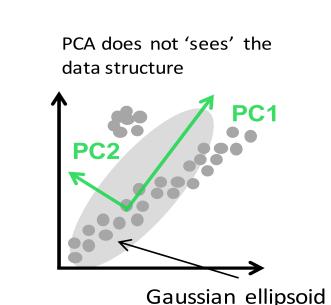
1. WHAT IS ICA?

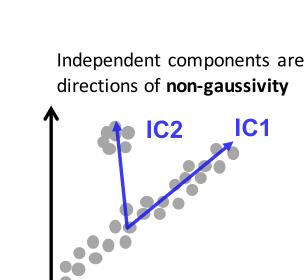
matrix factorisation

blind source deconvolution

minimize mutual information = maximize non-gaussivity⁵

compared to Principal Component Analysis 6 (PCA), ICA does not impose orthogonality of components





compared to Negative Matrix Factorization (NMF), ICA does not impose any constraints, while NMF impose non-negativity of the weights and data. In our ICA analysis, negative projections are interpreted in terms of absolute values. Tests performed with NMF for immune cell types deconvolution gave results hard to interpret (data not shown)

ICA is a reproductible and unsupervised manner to decompose transcriptomes into biological functions

ICA revealed components realted to immune cell types in tumor transcriptomes

Estimating immune cell types aboundance, better validation framework and user-friendly pipeline to perform our analysis are ongoing progress

2. BUT HOW TO DEFINE NUMBER OF **COMPONENTS?** Independent components cannot be naturally ordered

the independent components are only defined as local minima of a non-quadratic optimization function = runs can give different

icasso⁸ method have been developed to improve the stability of the independent components

data analysis

Fig 1. A) visualizing the results of computing ICA 100 times with MSTD=29 components in METABRIC dataset and component clustering (icasso package, Canonical Correlation Analysis (CCA) plot). Each black point represents a component, red lines show significant correlations between them, polygons show the convex hull area of the clusters. B) stability profiles for ICA decompositions in various dimensions (from 2 to 100) shown by grey lines. Two-line clustering result is shown by blue and red dashed lines, with MSTD determined as the point of their intersection (vertical dashed line). C) average stability profile SMtotal (blue line) and the average stability of 10 most stable components SM(10) (red line).

4. VALIDATION 9

Lack of gold standard

Possible partial validation with FACS of blood, IHC, methylome

In most publications for simulated mixtures:

Cell type profiles from blood or cell-lines

Simplistic, do not take into account gene covariance and plausible proportions of cell types

Our simulation ideas

using single cell profiles from Melanoma to simulate bulk

implicit: estimation of distribution parameters

explicit: mimic existing ditribution

copulas?

Generative Adversarial Networks (GAN)?

 $I_q(C_k) = \frac{1}{|C_k|^2} \sum_{i,j \in C_k} |r_{ij}| - \frac{1}{|C_k| \sum_{l \neq k} |C_l|} \sum_{i \in C_k} \sum_{j \notin C_k} |r_{ij}|$ $|\mathcal{C}_k|$ kth cluster $|\mathcal{C}_k|$ kth cluser size $|\mathcal{C}_i|$ Pearson correlation coeff between components

Compute average stability index:

 $S(M) = \frac{1}{M} \sum_{k} I_q(C_k)$ M number of clusteres

Compute stability index of each cluster

MSTD = the point of intersection of the two lines approximating the distribution of stability profiles

Maximally Stable Transcriptome Dimension (MSTD), a novel

criterion for choosing the optimal number of ICs in transcriptomic

3. ICA TO STUDY IMMUNE INFILTRATION

3.1 Model

In the basic hypothesis¹⁰, mixture of signals from TME in transcriptomic samples can be described as a linear mixture.

AX=B

B microarray data matrix of one biological sample, X are mixing proportions and A is the matrix of expression of genes in each cell type.

Blind source separation separates the set of mixed signals x(t), through determination of an 'unmixing' matrix $B=[b_{ii}] \in \mathbb{R}^{n \times m}$, to 'recover' an approximation of original signals, $y(t) = (y_1(t), t)$ \ldots , y_n $(t))^T$

1. Fridman et al. (2012)

2. Gnjatic et al. (2017)

3. Zinovyev et al. (2013)

$$y(t) = B \cdot x(t)$$

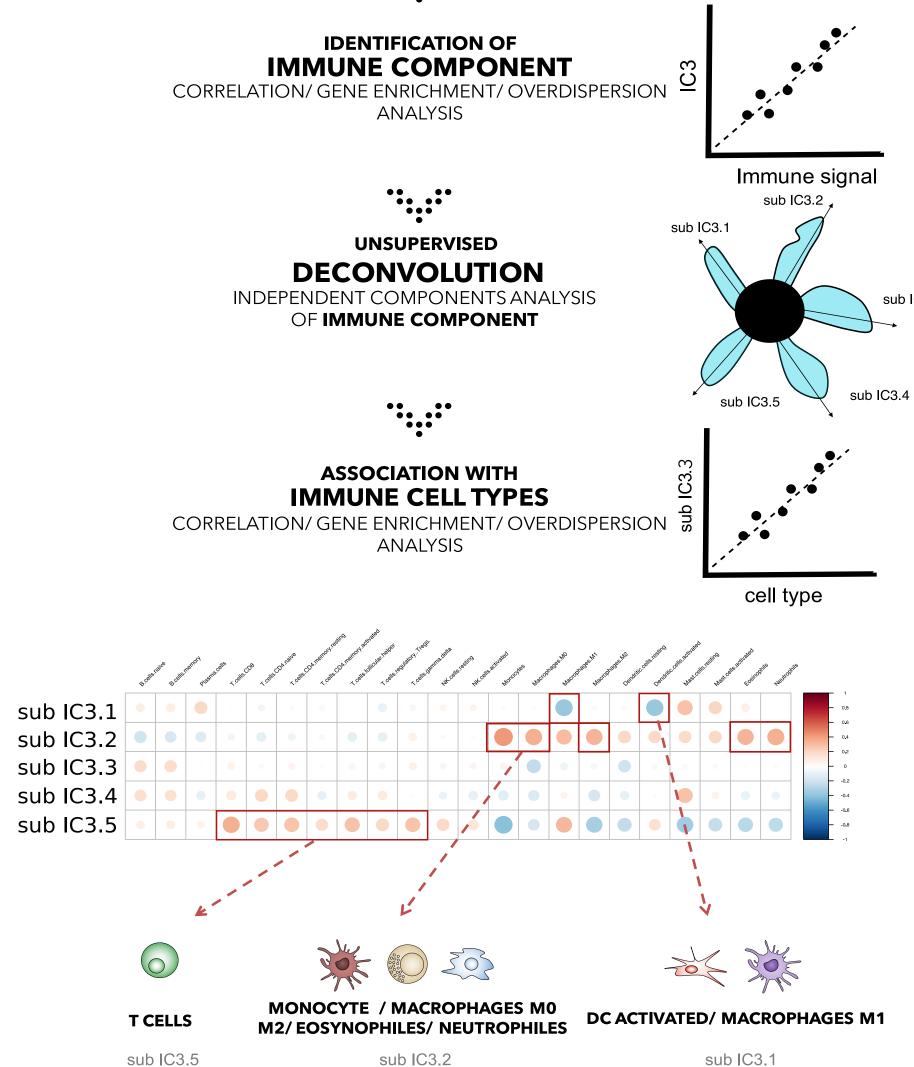
BIBLIOGRAPHY

9. http://www.cbioportal.org/

10. Abbas et al. (2009)

12. Loi et al. (2007)

11. Cardoso et al. (2009)



3.2 Application to Breast carcinoma

TRANSCRIPTOMIC

DATA

BREAST CARCINOMA PUBLIC DATASET

•••••

UNSUPERVISED DECONVOLUTION

INDEPENDENT COMPONENTS ANALYSIS

3.3 Decomposition of Metabric

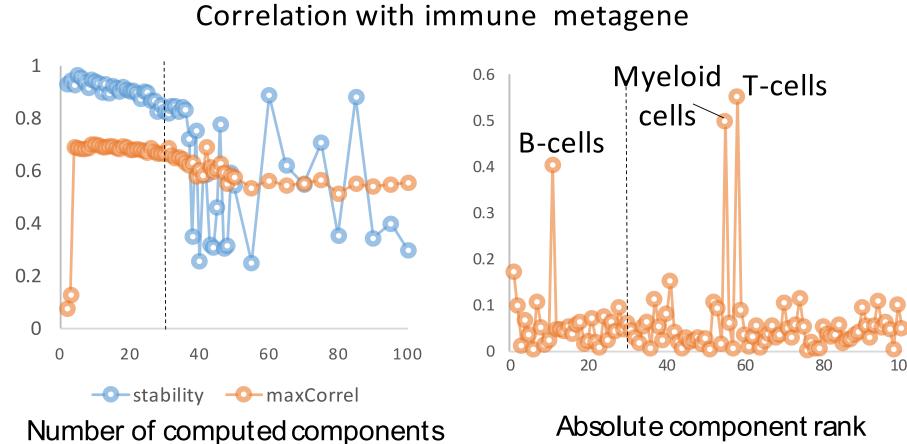


Figure 2. Analysis of reproducibility of previously identified metagenes in independent components of the METABRIC dataset. Enrichment in ImmGene signatures, performed with ToppGene (p-value < 0.001)

4. Hyvärinen et al. (2001) 13. Newman et al. (2015) 5. Comon and Jutten (2010) 14. Tamayo, et al. (2005) 6. Pearson et al. (1901) 15. Martignetti et al. (2016) DOWNLOAD 7. Lee and Seung (1999) 16. Heng et al. (2008) 8. Himberg et al. (2003) 17. Chen et al. (2009)