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TME critically impacts
cancer prognosis and
response to treatment’

TME is composed of tumor
cells, fibroblasts ana a
diversity of immune cells’

Estimating immune
infiltration and its impact
remains a challenging

ICA is a reproductible and unsupervised manner to
decompose transcriptomes into biological functions

ICA revealed components realted to immune cell
types in tumor transcriptomes

Estimating immune cell types aboundance, better
validation framework and user-friendly pipeline to
perform our analysis are ongoing progress

Lack of gold st
ack of gold standard Our simulation ideas

Possible partial validation with
FACS of blood, IHC, methylome

In most publications for simulated mixtures:

las?
Cell type profiles from blood or cell-lines copuias

explicit : mimic existing ditribution

Generative Adversarial Networks (GAN) ?

Simpilistic, do not take into account gene
covariance and plausible proportions of cell

types
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In the basic hypothesis'® mixture of signals from TME in
transcriptomic samples can be described as a linear mixture.

AX=B

B microarray data matrix of one biological sample, X are
mixing proportions and A is the matrix of expression of
genes in each cell type.

: .1 : :
Blind source separation separates the set of mixed signals x(t),

through determination of an 'unmixing' matrix B=[b; J€ R"",
to 'recover' an approximation of original signals, y(t) =(y; (t),
Y ()

y(t) =B - x(t)
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7~ Apply ICA to reduce
tumor transcriptomes
into essential factors?

|dentify the immune-related
genes and their importance in
each transcriptome

|dentify cell-type specific
independent components
Develop and validate

the method and the
pipeline

using single cell profiles from
Melanoma to simulate bulk

implicit: estimation of distribution parameters

sub IC3.1
sub IC3.2
sub IC3.3
sub IC3.4
sub IC3.5
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PCA does not ‘sees’ the
data structure

A

Independent components are
directions of non-gaussivity

0 IC2 IC1

PC1 T/
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matrix factorisation

PC2

blind source deconvolution

~

Gaussian ellipsoid

minimize mutual information =
] maximize non-gaussivity>

compared to Principal Component Analysis(6
(PCA), ICA does not impose orthogonality of
components

. ey e

compared to ”ICA does not impose any constraints, while
NMF impose non-negativity of the weights and data. In our ICA analysis, negative projections are
interpreted in terms of absolute values. Tests performed with NMF for immune cell types
deconvolution gave results hard to interpret (data not shown)

Independent components cannot
be naturally ordered

9
METABRIC dataset
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MSTD =29
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the independent components are
only defined as local minima of a
non-quadratic optimization
function = runs can give different
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Fig 1. A) visualizing the results of computing ICA 100 times with MSTD=29 components in
METABRIC dataset and component clustering (icasso package, Canonical Correlation
Analysis (CCA) plot). Each black point represents a component, red lines show significant
correlations between them, polygons show the convex hull area of the clusters. B) stability
profiles for ICA decompositions in various dimensions (from 2 to 100) shown by grey lines.

icasso® method have been
developed to improve the
stability of the independent
components

Two-line clustering result is shown by blue and red dashed lines, with MSTD determined as
the point of their intersection (vertical dashed line). C) average stability profile SMtotal
(blue line) and the average stability of 10 most stable components SM(10) (red line).

Maximally Stable Transcriptome Dimension (MSTD), a novel
criterion for choosing the optimal number of ICs in transcriptomic
data analysis

& Compute stability index of each cluster:
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Determining the optimal number of reproducible
independent components for transcriptomic data
analysis

Ulykbek Kairov, Laura Cantini, Alessandro Greco, Askhat

Molkenov, Urszula Czerwinska, Emmanuel Barillot, Andrei
Zinovyev
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Ck. kth cluster |Ck| kth cluser size rij Pearson correlation coeff between components

Compute average stability index:

MSTD = the point of intersection of the two lines approximating the
distribution of stability profiles

3.2 Application to Breast carcinoma 3.3 Decomposition of Metabric

TRANSCRIPTOMIC
DATA 12

BREAST CARCINOMA PUBLIC DATASET

Correlation with immune metagene
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