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Large-Scale Black-Box Optimization

minimize f (x)
subject to x ∈ X

I f : X = [−1, 1]n → R
I n� 102

I minx∈X f (x) = f (x∗) = f ∗

I High-order information (e.g., derivatives) are unavailable.

Related Work

I Algorithmic work has been based on either decomposition or embedding
techniques.

I Embedding algorithms exploit the assumption/empirical observation of low
effective dimensionality

I Recent works presented Random Embedding (RE) techniques based on the
random matrix theory and provided probabilistic theoretical
guarantees [3, 2, 1].

I Multiple runs are employed for RE to substantiate the probabilistic
theoretical performance.

Motivation

Breaking away from the multiple-run framework and follow the optimism in
the face of uncertainty principle via stochastic hierarchical bandits over a
low-dimensional search space Y .

Notation

I N denotes the Gaussian distribution with zero mean and 1/n variance.
I {Ap}p ⊆ Rn×d , with d � n, is a sequence of realization matrices of the

random matrix A whose entries are sampled independently from N .
I The Euclidean random projection of the ith coordinate [y]i to [X ]i is

defined as follows.

[PX(Ay)]i =


1, if [Ay]i ≥ 1;

−1, if [Ay]i ≤ −1;
[Ay]i otherwise.

I gP(y) is a random (stochastic) function such that gP(y)
def
= f (PX(Ay))

and gp(y) = f (PX(Apy)) is a realization (deterministic) function, where
y ∈ Y ⊆ Rd .

Contribution I

I The mean variation in the objective value for a point y in the
low-dimensional space Y ⊆ Rd projected randomly into the decision
space X of Lipschitz-continuous problems is bounded.

I Mathematically, ∀y ∈ Y ⊆ Rd , we have

E [|gp(y)− gq(y)|] ≤
√
8 · L · ||y|| .

Figure 1: Numerical bound validation

Contribution II

I EmbeddedHunter is a Y-partitioning tree-search algorithm.
I The partitioning is represented by a K -ary tree T , where nodes of the same

depth h correspond to a partition of Kh subspaces / cells.
I For each node (h, i), f is evaluated at the center point yh,i of its cell Yh,i

once or more times with different projections based on ||yh,i||.

Convergence Analysis

I Define h(t) as the smallest h ≥ 0 such that:

Chmax

h(t)∑
l=0

(m̂δ(l))−d̂ ≥ t ,

where t is the number of iterations. Then EmbeddedHunter’s regret is
bounded as

r(t) ≤ min
h≤min(h(t),hmax+1)

τ (h) + δ(h) .

Performance Evaluation

Algorithms Problems
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Effective Dimension (d)
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Effective Dimension Knowledge

0 50 100 150 200 250

100

101

102

103

104

105

106

d

r
e
g
r
e
t

0 50 100 150 200 250
100

102

104

106

108

d

r
e
g
r
e
t

0 50 100 150 200 250

10−2

10−1

100

101

102

d

r
e
g
r
e
t

0 50 100 150 200 250

100

101

d

r
e
g
r
e
t

Conclusion

I EmbeddedHunter builds a stochastic tree over a low-dimensional search
space Y , where stochasticity has shown to be proportional on average with
the norm of the nodes’ base points.

I Besides its theoretically-proven performance, numerical experiments have
validated EmbeddedHunter’s in comparison with recent
random-embedding methods.
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