A Markov Random Field Model for Entity-Relationship Retrieval

Pedro Saleiro, Nataša Milić-Frayling Eduarda Mendes Rodrigues, Carlos Soares

Entity-Relationship (E-R) Retrieval: given a query containing types of multiple entities and relationships connecting them, search for relevant tuples of related entities.

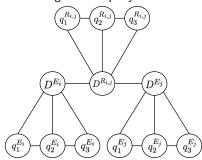
Example: Silicon Valley companies founded by Harvard graduates expects a list of tuples *<company, founder>* as results, such as *<Facebook, Mark Zuckerberg>*.

Problem: IR-centric approach to E-R retrieval without pre-defined entity types and relationships.

Approach: we propose the Entity-Relationship Dependence Model (ERDM) that models complex queries about entities that are connected through a relationship using the Markov Random Field model for retrieval.

Entity-Relationship Dependence Model (ERDM)

ERDM creates a composite model allowing the computation of a joint posterior of multiple documents given multiple queries, instead of one document given one query.



Suppose that we have a relationship query of the format $Q = \{Q^{E_i}, Q^{R_{ij}}, Q^{E_j}\}$ we want to rank a relationship document $D^{R_{ij}}$ and two entity documents D^{E_i} and D^{E_j} by descending order of the following joint posterior:

$$P_{\Lambda}(D^{R}, D^{E}|Q)$$

$$\stackrel{rank}{=} \log P_{\Lambda}(D^{R_{i,j}}, D^{E_{i}}, D^{E_{j}}, Q^{R_{i,j}}, Q^{E_{i}}, Q^{E_{j}})$$

$$\stackrel{rank}{=} \log \prod_{c \in C(G)} \psi(c; \Lambda)$$

$$\stackrel{rank}{=} \sum_{c \in C(G)} \log \exp[\lambda_{c}f(c)]$$

$$\stackrel{rank}{=} \sum_{c \in C(G)} \lambda_{c}f(c)$$
(1)

The potential functions are computed for five types of cliques: $\psi(Q^{E_i}, D^{E_i}; \Lambda); \psi(Q^{E_j}, D^{E_j}; \Lambda); \psi(Q^R, D^R; \Lambda); \psi(D^{E_i}, D^R; \Lambda);$ $\psi(D^{E_j}, D^R; \Lambda);$

We use unigram and bi-gram Language Models as feature functions for every clique with a query and a document node.

The potential function for the 2-cliques composed by an entity document and a relationship document is the following:

$$f_T^{ER}(D^{E_i}, D^{R_{i,j}}) = \left[(1 - \alpha) t f_{\{1,0\}, (D^{E_i}, D^{R_{i,j}})} + \alpha \frac{df_{D^{E_i}}^R}{df^R} \right]$$
(3)

where tf indicates whether an entity E_i is present in the relationship document $D^{R_{i,j}}$ or not. The background model employs the notion of entity frequency as the following: $df^R_{D^{E_i}}$ is the total number of relationship documents containing the entity E_i and df^R is the entity-pair frequency in the relationship corpus.

Learning to rank is performed using the Coordinate Ascent algorithm under the sum normalization and non-negativity constraints.

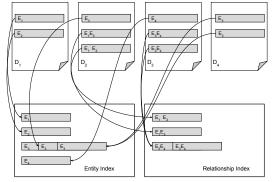
Data and Indexing

E-R retrieval requires collecting evidence for both entities and relationships that can be spread across multiple documents.

Our design pattern basically can be thought as creating a metadocument D^{E_i} for each entity, as well as, a meta-document $D^{R_{i,j}}$ for each entity-pair (relationship).

These meta-documents are created by extracting entity and entitypairs contexts from the corpus of raw documents. For each raw document D we extract entity or entity-pair associated terms.

We use ClueWeb-09-B corpus with FACC1 entity linking as dataset. We obtained 4.1M entities and 71M unique entity-relationships.



Test Collections

Collection	Amount	Example NL query	Example relational format	
ERQ	28	Find novels written by Jane Austen.	{novel, written by, Jane Austen}	
COMPLEX	60	Economists influenced by Karl Marx	{Economist, influenced by , Karl Marx}	
RELink	100	Dog breeds and country of origin	{dog breed, original from, country}	

Results

	ERQ				
	MAP	P@10	MRR	NDCG@10	
BaseE	0.0469	0.0109	0.0489	0.038	
BaseR	0.1041	0.0509	0.1089	0.1104	
ERDM	0.3107	0.1903	0.3761	0.3175	
	COMPLEX				
	MAP	P@10	MRR	NDCG@10	
BaseE	0.0264	0.005	0.0318	0.1223	
BaseR	0.0585	0.0184	0.0748	0.0778	
ERDM	0.2879	0.1417	0.3296	0.3323	
	RELink				
	MAP	P@10	MRR	NDCG@10	
BaseE	0.0395	0.019	0.0679	0.0395	
BaseR	0.0451	0.021	0.0663	0.0726	
ERDM	0.1249	0.048	0.1726	0.1426	